Search results for "Schottky diodes"
showing 10 items of 11 documents
Isotopic Enriched and Natural SiC Junction Barrier Schottky Diodes Under Heavy Ion Irradiation
2022
The radiation tolerance of isotopic enriched and natural silicon carbide junction barrier Schottky diodes are compared under heavy ion irradiation. Both types of devices experience leakage current degradation as well as single-event burnout events. The results were comparable, although the data may indicate a marginally lower thresholds for the isotopic enriched devices at lower linear energy transfer (LET). Slightly higher reverse bias threshold values for leakage current degradation were also observed compared to previously published work.
Heavy-Ion-Induced Degradation in SiC Schottky Diodes : Incident Angle and Energy Deposition Dependence
2017
International audience; Heavy-ion-induced degradation in the reverse leakage current of SiC Schottky power diodes exhibits a strong dependence on the ion angle of incidence. This effect is studied experimentally for several different bias voltages applied during heavy-ion exposure. In addition, TCAD simulations are used to give insight on the physical mechanisms involved.
Incident angle effect on heavy ion induced reverse leakage current in SiC Schottky diodes
2016
Heavy-ion induced degradation in the reverse leakage current of SiC Schottky power diodes shows distinct dependence on the angle of incidence. TCAD simulations have been used to study the physical mechanisms involved.
Heavy Ion Induced Degradation in SiC Schottky Diodes : Bias and Energy Deposition Dependence
2017
Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence. peerReviewed
Responsivity measurements of silicon carbide Schottky photodiodes in the UV range
2014
We report on the design and the electro-optical characterization of new classes of 4H-SiC Schottky UV detectors, fabricated employing Ni 2 Si interdigitated strips. We have measured, in dark conditions, the forward and reverse I-V characteristics as a function of temperature and C-V characteristics. Responsivity measurements of the devices, as function of wavelength in the UV range, of package temperature and of applied reverse bias are reported. We also compared devices featuring different strip pitch sizes, discussing their performances, and found the device exhibiting best results.
Enhanced Charge Collection in SiC Power MOSFETs Demonstrated by Pulse-Laser Two-Photon Absorption SEE Experiments
2019
A two-photon absorption technique is used to understand the mechanisms of single-event effects (SEEs) in silicon carbide power metal–oxide–field-effect transistors (MOSFETs) and power junction barrier Schottky diodes. The MOSFETs and diodes have similar structures enabling the identification of effects associated specifically with the parasitic bipolar structure that is present in the MOSFETs, but not the diodes. The collected charge in the diodes varies only with laser depth, whereas it varies with depth and lateral position in the MOSFETs. Optical simulations demonstrate that the variations in collected charge observed are from the semiconductor device structure and not from metal/passiva…
Molecular dynamics simulations of heavy ion induced defects in SiC Schottky diodes
2018
Heavy ion irradiation increases the leakage current in reverse-biased SiC Schottky diodes. This letter demonstrates, via molecular dynamics simulations, that a combination of bias and ion-deposited energy is required to produce the degradation. Peer reviewed
Charge Transport Mechanisms in Heavy-Ion Driven Leakage Current in Silicon Carbide Schottky Power Diodes
2016
Under heavy-ion exposure at sufficiently high reverse bias voltages silicon carbide (SiC) Schottky diodes are observed to exhibit gradual increases in leakage current with increasing ion fluence. Heavy-ion exposure alters the overall reverse current-voltage characteristics of these diodes, leaving the forward characteristics practically unchanged. This paper discusses the charge transport mechanisms in the heavy-ion damaged SiC Schottky diodes. A macro model, describing the reverse current-voltage characteristics in the degraded SiC Schottky diodes is proposed. peerReviewed
Unifying Concepts for Ion-Induced Leakage Current Degradation in Silicon Carbide Schottky Power Diodes
2020
The onset of ion-induced reverse leakage current in SiC Schottky diodes is shown to depend on material properties, ion LET, and bias during irradiation, but not the voltage rating of the parts. This is demonstrated experimentally for devices from multiple manufacturers with voltage ratings from 600 V to 1700 V. Using a device with a higher breakdown voltage than required in the application does not provide increased robustness related to leakage current degradation, compared to using a device with a lower voltage rating. peerReviewed
Heavy-Ion-Induced Degradation in SiC Schottky Diodes : Incident Angle and Energy Deposition Dependence
2017
Heavy-ion-induced degradation in the reverse leakage current of SiC Schottky power diodes exhibits a strong dependence on the ion angle of incidence. This effect is studied experimentally for several different bias voltages applied during heavy-ion exposure. In addition, TCAD simulations are used to give insight on the physical mechanisms involved. peerReviewed